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A study is made of hydromagnetic oscillations in a rotating fluid sphere. The 
basic state is chosen as a uniform current parallel to the axis of rotation. It is 
found that the non-dissipative normal modes are described by a modified form of 
the Poinear6 eigenvalue problem. For small rotation rates, the lowest non- 
axisymmetric modes are unstable. For rotation rates of geophysical interest all 
normal modes are stable. The introduction of ohmic dissipation leads to a hydro- 
magnetic boundary-layer problem. Solutions for the boundary layer are outlined 
indicating its role in altering the free periods, damping the oscillations and pro- 
ducing external magnetic fields. Dispersion relations are derived which establish 
that the zonal phase velocities of both ‘fast’ hydrodynamic and ‘slow’ hydro- 
magnetic waves can be of either sign. Observations of the secular variations of the 
earth’s magnetic field indicate motion primarily towards the west. A mechanism 
for the selective excitation of the observed motion is discussed. 

Introduction 
The secular variation of the earth’s magnetic field is believed to be a manifesta- 

tion of the dynamo process which maintains the field. The various harmonic 
components of the secular variation appear to move primarily toward the west. 
It has been recently proposed by Hide (1966) that these motions are the hydro- 
magnetic analogues of the two-dimensional Rossby, or P-plane, waves studied in 
meteorology and oceanography. In  a similar proposal by Malkus (1967), unstable 
two-dimensional hydromagnetic waves were shown to develop on toroidal shear 
layers in a rotating sphere. In  both these studies the ‘deep ’ two-dimensional 
waves moved slowly to the west. 

However, there is little evidence of two-dimensionality in the observed secular 
variation. If the geodynamo is as turbulent as its external features suggest, it  
seems likely that the forces in the core would excite numerous three-dimensional 
oscillations. If three-dimensional modes can move both to the east and west, then 
the observation of primarily westward-moving waves may give us significant 
information about the process which produces them. 

The plan of this paper is to construct a suitable idealization in which all the 
modes of hydromagnetic oscillation of a rotating spheroid could be determined. 
By good fortune, the choice of a uniform electric current density to define the 
basic magnetic field leads to a modified Yoincar6 eigenvalue problem for the 
oscillations. Studied by Bryan (1888), Cartan (1922), Roberts & Stewartson 
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(1963a, b,  c) andrecentlyby Greenspan (1964,1965), many of the properties of the 
Poinear6 problem are well understood. Here we derive several dispersion relations 
from the general eigenvalue equation to establish that, in the hydromagnetic 
case, the free modes have phase velocities both to the east and west. 

1. Stability of the basic state to axisymmetric disturbances 
The basic magnetic field is selected with two criteria in mind. The first of these 

is that it be a toroidal (zonal) field, reflecting the gross structure of the presumed 
geomagnetic field in the earth's core. The second criterion is that the basic state 
be realizable in an experiment, hence that it is stable. 

Various authors have studied the stability to axisymmetric disturbances of 
toroidal magnetic fields in rotating incompressible fluids. This problem is akin to 
the classical study by Taylor (1923) on instabilities between rotating cylinders. 
The appropriate descriptive equations are: 

0 = (dV/dt) - vV2V+ VP/p + H  x (V x H) + 30 x V, 

0 = v.v = V.H, 
0 = (aH/at) - rV2H - V x (V x H), 

(1.1) 

(1.2) 

(1.3) 

where Pis the pressure, p the constant density, V the vector velocity, v the kine- 
matic viscosity, o the angular velocity of rotation, 7 the magnetic diffusivity and 

H = ( ,~ /4~p)4%,  (1.4) 

where X i s  the magnetic field and p the constant permittivity of the medium. 

to axisymmetric disturbances in a non-dissipative fluid is 
Michael (1954) established that a necessary and sufficient condition for stability 

r-3(a/ar) (wr2+y+r)2-r(a/ar) (H4/r)2 2 0, (1.5) 

where the cylindrical co-ordinates r ,  #, z are used with the x-axis parallel to o 
(w  is the magnitude of o), and where V ,  H are the prescribed toroidal velocity 
and magnetic fields. The content of (1.5) is that a radial increase of the angular 
momentum density and a radial decrease of electric current density are both 
stabilizing. 

According to (1.5), a non-dissipative fluid can always be stabilized by a 
sufficiently large uniform rotation. However, Yih (1959), Lai (1962) and Pao 
(1966) have shown that the diffusion due to v and q can be destabilizing. For an 
arbitrary ratio of 1' to 7, stability to axisymmetric disturbances is assured only if 
both 

+ . +  

r-3(a/ar) (ur2+%r)2 3 0 (1.6) 
and - r(a/ar) (H,/r)2 2 0. (1.7) 

The marginal condition from (1.7) corresponds to a uniform current density 
parallel to the axis of rotation. 

A close approximation to the marginally stable magnetic state is a plausible 
condition to anticipate within the earth, just as one anticipates that thermal 
turbulence in a planetary or stellar atmosphere will produce the margina,l state 
of an adiabatic lapse rate. However, the earth will also have a boundary region 
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where the toroidal magnetic field almost vanishes, for the geodynamo must close 
most of its current paths within the core. The problems created by non-linear 
boundary regions are not addressed in this papeT. Therefore, the applicability to 
the earth’s core of the dispersion relations to be found will be restricted to wave- 
lengths which are large compared to the spatial scale of the boundary region. 

In the following section we shall seek the non-dissipative normal modes of a 
rotating fluid for the experimentally realizable case of a uniform current density 
parallel to the axis of rotation. The dissipative boundary layers associated with 
these disturbances are discussed in 0 4. 

2. Linear oscillations about a state of uniform current 
In  lieu of a working geodynamo to produce the assumed basic state, the uni- 

form current can be imposed on the rotating fluid by an external potential. Solu- 
tions of the hydromagnetic equations (1.1, 2 ,3)  will be sought for v = 7 = 0 and 
with no initial velocity field. 

In  linearized form (1.1, 2, 3) are written 

0 = (aV/dt) +VP’+Ho x (V x H ) + H  x (V x H,)+ 2~ x V, 
V.V = 0 = V.H, 

m / a t  = v x (v x H ~ ) ,  

P‘ = P/p + BH;, 

(2.1) 

(2.2) 

(3.3) 

(2.4) 

H , = j x r ,  (3.5) 

where V x H, = 2j is a constant vector parallel to o, and we choose 

where r is the position vector measured from the axis of rotation. 
The conditions on V and H at the spherical boundary are that 

V . n  = 0 = H.n, (2.6) 

where n is a unit vector normal to the surface. 
The boundary condition on H is a consequence of (2.3) and the V boundary 

condition. 
None of the coefficients of (2.1,2,3) depend upon the longitude angle q5 or time. 

If boundary conditions are chosen which are also independent of q5 and time, we 
may seek solutions of the form 

R(r, q5, z, t )  = Q(r,  z)ei(k+c*’i), (2 .7 )  

where R stands for any of the variables V,, t$, V,, H,, H$, €& and P‘. In  (2.7) the 
cylindrical co-ordinates r ,  q5, z are used with the z-axis parallel to W, k indicates 
the zone1 wave-number, and CT is a non-dimensional frequency in units of w. 

As a consequence of (2.5, 7) 

v (v H,) = [ t ( a i ya# )  + &av,/a,) +s(av,pq5)] = ikjv, (2.8) 

where P, 4,s are unit vectors in the indicated directions andj  is the scalar magni- 
tude of j. Also it follows that 

HOX(VXH) = -ikjH+V(H.Ho). (3.9) 
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With the use of (3.5, 7, 8, 9) one may write (2.1: 2, 3) as 

Willem V .  R. Mallcus 

O = i ~ v + V P " - i k h + 2 2 ~  (V-h), (3.10) 

V . V  = 0 = V.h, (2.11) 

- i ~ h  = ilcy'v, (3.12) 

where b = RjH, = wt ,  v = RoV, y = . i / ~ ,  (2.13) 

x = Rx', I1 is the radius of the sphere, and 

P" = P' + H . H,. (3.14) 

The elimination of h from (2.10, 12) leads to 

0 = VP" + x;v + 22 x Z 1 V ,  (3.15) 

where Yl = {(a/aT)+(a/a$)} = -i(a+lcy2), (2.16) 

z2 z? ((ayaT2) - y"(az/a$z)} = - a2+lc2yZ (2.17) 

and p" = -igp". (2.18) 

From (2.2, 15) one can construct a single equation in P" and another equation in 
P" expressing the boundary condition (2.6). 

The divergence of (2.15) is 

V2P'" - 2 8 .  (V x 2 q V )  = 0. 

+ Y2(V x v) - 2a(Y1v)/az = 0. 
The curl of (2.15) is 

(2.19) 

(3.20) 

Multiplying the x-component of (2.20) by 64;, (2.16), one obtains 

+L?2(2.vx~lv)-2a(~;2.v)/i- iz = 0, (2.21) 

a ( Z ; P l / r ) / a x + ~ 2 q ~ . ~  = 0. (2.32) 

while 9': times the z-component of (2.15) leads to 

Elimination of 9';2.v and 2.V x P1v from (3.19, 21, 22) permits one to write the 
single sixth-order equation for P" 

(YiVZ+ 4 a 2 9 3 a z 2 )  P" = 0. (2.23) 

The condition on P" that the normal velocity at  the boundary is zero can be 
constructed from the three components of (2.15) as 

{2?;r(a/aY)+ ( ~ ~ + 4 ~ : ) z ( a / a x ) + i 2 ~ l Y 2 1 c } P "  = 0. (2.24) 

Equations (2.23, 24) may be written in the simpler form 

(2 .25 )  

with the boundary condition 

{[r(a/ar) + z(a/ax) ]  + 2(k/h) - (a /nz)z (a /az) )  0 = 0, (2.26) 

where ( 2 . 2 7 )  
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The determination of permissible free hydromagnetic oscillations is now re- 
duced to the solved PoincarB eigenvalue problem. In treating the inviscid oscilla- 
tions of a fluid in a rotating sphere, Greenspan (1964) has made a comprehensive 
analysis of the eigenstructure of (2.25, 26). In  Greenspan’s and earlier studies, h 
was the frequency of oscillation, corresponding to cr in (2.7). Greenspan estab- 
lishes that h is real and IhJ is less than 2. The eigenvalue h = 0 is associated with 
the infinite subset of geostrophic modes of motion. The eigenfunctions are 
orthogonal polynomials in r and z. The problem is as easily solved in an arbitrary 
spheroid as in a sphere. 

In this hydromagnetic case the restrictions on I h I do not restrict t ~ ,  as may be 
seen in (2.27). Solving that equation for cr one obtains 

(2.28) 0- = +A( - 1 5 [ 1 +  4y2k(k- h)/h2]3). 

For h = 0 there is the one acceptable solution: 

G = O ,  k = 0 ,  (2.29) 

which represents the subset of magnetogeostrophic flows of (2.1, 2, 3) for all 
states v x H, = 0. The circulation theorem of Greenspan (1965) can be extended 
to this hydromagnetic case to establish that the integrated circulation of both v 
and h separately are entirely due to the magnetogeostrophic mode. 

A second solution of (2.27) for h = 0 is 

cr = y k ,  (2.30) 

which represents two cylindrical AlfvBn waves whose angular phase speed is 
independent of r.  Like the solutions for h = 2, one can show that these Alfv6n 
waves cannot satisfy the boundary conditions of the problem and hence are 
unacceptable. 

An interesting consequence of (2.28) is that unstable waves can occur in the 
special case k = 1. Rewriting (2.28) for k = 1 as 

(2.31) 

one sees that instability occurs when 

y2 > @2/(h- 1). (2.32) 

We establish in the following section that there are k = 1 modes with + 2 > h 3 1. 
Hence the minimum y 2  for instability is y 2  > 1. 

However, in the problem of geophysical interest, y 2  is very small. When this is 

As no explicit study of the possible dispersion relations h = h(k), here cr = cr(k), 
has yet been made, several will be deduced in the following section. 

cr = - frh(l5 i([472(A- 1)/h2] - 1)6), 

50, 0- has the roots fJ- = y2[(k2/h) - k], (g = - A). (2.33) 

3. Hydromagnetic dispersion relations from PoincarC’s problem 
The solutions to (2 .25)  are found by noting that it may be written as Laplace’s 

equation when (1 - 4/h2) is absorbed into the x variable. Separation of variables 
is possible in an (imaginary) oblate spheroidal co-ordinate system. We let 

r = CI(1-p2)t ( l - l2)~ ,  x = C,pq (3.1) 

and choose l = l o  (3.2) 
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on the spherical surface r 2 + z 2  = 1. Hence, on this surface, ,~i = cost9 and 

7; = lp;,  1-7; = 1p:.  (3.3) 

One then selects ro so that the boundary condition (2.26) is separable. Expressing 
(2.26) in terms of ,IL and from (3.1), one writes 

and 

Hence, the p-dependent part of the boundary condition (3.6) will vanish if 

To = Qh. (3.7) 

The boundary condition (3.4) reduces to 

and 

In the co-ordinate system defined by (3 .1 ,9) ,  the basic field equation (2.25) may 
be separated as two associated Legendre operators in the new independent 
variables 7 and p. Therefore, solutions of (2 .25)  are 

@)nk = P:(7)p:(P), , (3.10) 

where Pz(x) is an associated Legendre polynomial. From (3.8, 10) the eigenvalue 
problem is written 

(1 - 7;)  [aP:(r)larl,=,, = kPz(r0). (3.11) 

As there are many possible roots ro of the polynomials (3.11) for each choice of 
k ,  n, a particular eigenfunction Qnk can have many eigenvalues. However, the 
fields v and h derived from Qnk are explicit functions of ro, so that each v0 (n, k )  
corresponds to a set of fields v, h, P which differ from each other. 

From the properties of the associated Legendre polynomials one may rewrite 
(3.11) as 

(3.12) 

Two simple relations between r0 and k can be found from (3.12) for those 
eigensolutions @& with linear and quadratic dependence on z .  The asymptotic 
values of r0 for n k can also be determined. Other relations are immersed in the 
algebraic complexity of (3.12). For the case ?z = k + 1, the associated Legendre 
polynomials have the property 

hence 

(3.13) 

(3.14) 

plus the unacceptable root r0 = - 1. The corresponding uiinormalized eigen- 

(3.15) 
function is 

@k+l  k ( r , z )  = wk. 



Hydromagnetic planetary waves 799 

The angular phase velocities of hydromagnetic waves for this class of solutions 
is found from (2.33, 3.7, 14) as 

c, = ajk = y2[(Ic/2yo)- 11, Cp = -2y , /k ,  (3.16) 

(3.17) 

Among the interesting properties of these solutions is that their lowest zonal 
mode, k = 1, has both the ‘high speed ’ hydrodynamic solution Cp = - 1 and the 
stationary solution C, = 0. This lowest mode represents a small tilt of the j-axis 
away from the w-axis. The result above indicates that solutions to this problem 
are not sensitive to such a tilt. 

Another property of (3.15) is that i t  is a solution which would persist in a 
radially stratified density field, since it represents eastward motions in spherical 
shells. To establish this latter point, one notes from (2.15) that 

v, = - 9 ; 1 a Q / a z ,  (3.18) 

J$ = (9; + 4 9 3 - l  [2Yl(a/ar) - (iIcP2/r)] @ (3.19) 

and V ,  = - (2; - 49:)-1[9,(i3/&) + 2(ik/r)] @, (3.20) 

where v = V ( y ,  2) &+VT), (3.21) 

and therefore the solutions (3.14, 15) have the property 

(~,)k+l,k = r2[44k+ 1) - 11, (Q,)k+,, ,  = - 2 / w +  1). 

rV, + zK = 0, (3.22) 

so that at  no point in the fluid is there a velocity normal to the spherical boundary. 
The second case which can be treated simply is n = k + 2. The two acceptable 

roots of (3.12) are 

(3.23) 

hence 

(C,),,,,, = y ~~ 

~~~ k ( k + 2 )  - - 1) --f f y2 (9. (3.24) 
(2(1 f [(k + 1) (k + 3 ) p k  + 3)1*} 

The corresponding un-normalized eigenfunctions are 

, = +[(2k + 3) ( 1  - 7;) r2- B(k + 1)  (1 - (2k + 3) 70z3}].  (3.25) 

These oscillations propagate both east and west, and their vertical velocity 
depends linearly on z throughout the fluid. One also notes that 

A3,1 = -0.1767, +1*510, y2 > 1.117. (3.26) 

Hence this is the first Ic = 1 mode with a positive h > 1. It would be unstable if 
y2 > 169/135. 

When n is much larger than k 

(3.27) 

where COSB = 7. From (3.12) it  is seen that the only acceptable solution in this 
limit is that B is of order kin and 1701 5 1. Hence, for k/n very small, 

c, 2: yZ( & 3x3- 1). (3.38) 
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We conclude that a class of low-frequency modes moves to the east, another 
class moves to the west, and that in the many dispersion relations C, is propor- 
tional to 

In  contrast to the conventional Alfvh waves, the linear solutions described in 
this section are not non-linear solutions. Prom (2.13) we see that 

kS, where 1 < s < 2. 

C,h = -y2v, (3.29) 

in the absence of ohmic dissipation. Hence, v x h = 0, and the non-linear mag- 
netic equation (1.3) is exactly satisfied. However, the two non-linear terms of the 
momentum equation (1 .1)  may be written 

N = v x (V x v) - yw2 h x (V x h), 

N = [I- ( Y / C ~ ) ~ ]  v x (V x v). 
or, using (3.39), 

(3.30) 

(3.31) 

N vanishes only for the angular Alfv6n phase speed IC,] = y. But it was pointed 
out after (2.30) that IC,l = y corresponds to h = 0 and is an unacceptable 
solution. Hence all solutions contribute to thenon-linear advection of momentum. 

4. Outline of the boundary-layer problem 
The magnetic diffusivity of the earth's liquid core is believed to be a million 

times larger than the kinematic viscosity. Available liquid metals for laboratory 
experiments also have magnetic diffusivit'ies many orders of magnitude larger 
than their viscosities. Hence viscous dissipation effects will be neglected in the 
following discussion. 

The retention of ohmic dissipation in the disturbance problem alters (2.12) to 
the form 

where we define the magnetic Ekman number 

[ ( a /h )  - EV2] h = ikyzv, (4.1) 

E f T/uR2. (4.2) 

Hence the operators Y1 and Y2 of (2.15, 16) become 

and (4.4) 

When E is small compared to one, we anticipate that the significant ohmic 
dissipation will occur in a limited region near the boundary. The latitudinal and 
longitudinal amplitude of this boundary layer will depend on the electromagnetic 
properties of the fluid and boundary material. Relevant geophysical and labora- 
tory situations will be discussedin a later paper. Here only the qualitative proper- 
ties of such boundary layers will be sought. For this limited purpose (2.11, 15, 
4 .3 ,4)  for v and P"' with h eliminated will be sufficient. 

We seek solutions for v of the form 

v = v, + ESv, + . . . + 8, + E-iV., + . . . , (4.5) 
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with a similar expansion for P“, where the tilde is used for the boundary-layer 
functions which vanish in the interior of the fluid. The spatial co-ordinate normal 
to the boundary is expanded by E-4 and relabelled n. Ordering (2.11, 15, 4.3, 4) 
in E), one first obtains 

To the next order (2.15) becomes 

I 

Po = n.S, = 0. 

n . (aPr/an) + L T ~ ~ T ~  + 28 x LZ~~V,  = 0, 

(4.6) 

(4.7) 
where LZlo = i( ky2 + (T - i a2/an2), 

Y2, = (k2y2-a2+i~a2/an2). 

The boundary-layer structure is quickly made apparent from (4.6, 7,  8) using 
Greenspan’s (1965) vector notation. Defining the vector 

W = n x So+iSo, (4.9) 

one may construct the following equation from (4.6, 7) 

(LZ2,+2i(n.8)LZ1,)W = 0, 
whose relevant solution is 

(4.10) 

W = Woe&*, 
82 = - i[k2y2 + 2(n.  8) ( ky2 + CT) - a2]/[2( n .2) - (TI. 

The zeroth-order relation between CT and k for small y is given in (2.33). Inserting 
that relation in (4.1 I) ,  one fhds to order y2 that 

(4.12) 

Hence the boundary layer for the low-frequency waves vanishes at the equator 
and has a ‘singular circle’ at h = - z(n.8). The ‘thickness’ of this boundary 
region is greater than that anticipated in the scaling by the factor y-1. 

However, the amplitude Wo of these boundary layers depends on the degree 
of restriction imposed on the tangential interior velocity vo by the electro- 
magnetic conditions at the boundary. Having obtained W, for any specified con- 
ditions, the efflux from the boundary layer and the first external magnetic fields 
are found from the Eo-order divergence equations. Solubility of the inhomogene- 
ous equations for v1 necessitates an alteration of CT which determines both the 
decay rate and an order EB shift in the eigenfrequency. 

5.  Conclusions 
Nothing has been found in the linear or non-linear aspects of the free wave 

solutions to suggest a preference for westward motion. Perhaps there is none, and 
the apparent westward motion of the earth’s field may be due to a retrograde 
rotation of a significant fraction of the core as suggested by Bullard, Freedman, 
Gellman & Nixon (1950). 

Another possibility is that, owing to the nature of the energy source, the most 
unstable waves move west. Laboratory studies of the flow induced in rotating 
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spheroids by forced precession are now in progress. In these flows, quasi-two- 
dimensional wave-like instabilities develop on toroidal shear layers resulting 
from the precession. A hydromagnetic analogy of this instability has been 
analysed in a recent paper (Malkus 1967). The unstable hydromagnetic waves of 
that theory move to the west. Although the motions in the earth’s core seem quite 
turbulent, the precession of the earth may induce sufficient toroidal flow to 
selectively excite the westward-moving waves. 

The author is indebted to George Backus and Harvey Greenspan for their 
valuable comments on a first draft of this paper. The contributions of Friedrich 
Busse to the continuing boundary-layer studies are gratefully acknowledged. 
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